贵溪红石金属有限公司年产5万吨金属硅扩 建项目重大变更竣工环境保护验收监测

报告表

建设单位:贵溪红石金属有限公司

编制单位: 鹰潭贯通环保有限公司

二零二零年十一月

WHAT BANK THE BOOK OF THE BOOK

表一

建设项目名称	贵溪红石金属有限公司年产5万吨金属硅扩建项目重大变更					
建设单位名称		贵溪红石金属有	可限公司			
建设项目性质	新建口 改	女扩建 ☑技改 □	〕迁建 口(:	划 √)		
建设地点	江西省鹰	潭市(贵溪)铜	产业循环经	济基地	All S	
主要产品名称		金属硅铁	È		N. A.	
设计生产能力	5 万吨/年					
实际生产能力		5 万吨/年				
建设项目环评 时间	2020年11月	开工建设时间	201	19年4月	1	
调试时间	2020年5月	验收现场	2020年7 2020年1			
环评报告表 审批部门	贵溪市生态环境局	环评 发 告表	南昌绿晟	达环保科 公司	抖技有限	
环保设施 设计单位	黄石市海蓝环保工 程有限公司	球保设施施工 单位	黄石市海	蓝环保工 公司	二程有限	
投资总概算	2000 万元	环保投资 总概算	25 元	比例	1.25%	
实际总投资	2000万元	实际环保投 资总概算	140 万元	比例	7%	
i	·// }					

一 建设项目环境保护相关法律、法规和规章制度

- (1) 《大学人民共和国环境保护法》(2015年1月1日);
- (水)中华人民共和国水污染防治法》(2018年1月1日);
- (3)《中华人民共和国大气污染防治法》(2018修订);
- (4)《中华人民共和国环境噪声污染防治法》(2018年12月29日修正版);
- (5)《中华人民共和国固体废物污染环境防治法》(2020年4月29日修正版):
- (6)《建设项目环境保护管理条例》(国务院令第 682 号, 2017 年 10 月 1 日);
- (7)《建设项目竣工环境保护验收暂行办法》国环规环评[2017]4号(2017年

测依据

11月20日);

- (8)《危险废物贮存污染控制标准》(GB 18597-2001)及修改单标准;
- (9)《建设项目竣工环境保护验收技术指南 污染影响类》(生态环境部, 公告 2018 年第 9 号, 2018 年 5 月 16 日);
- (10)《固定源废气监测技术规范》(HJ/T 397-2007)(2008 年 03 月 01 实施);
- (11)《地表水和污水监测技术规范》;
- (12)《工业企业厂界环境噪声排放标准》(GB12348-2008);
- (13)《环境噪声监测技术规范》(HJ 640-2012);
- (14)《大气污染物无组织排放监测技术导则》(HJ/T55-20%)
- (15)《一般工业固体废物贮存、处置场污染控制标准》(B18599-2001 及其 2013.6 修改单标准。

二建设项目环境影响报告表及家批部门审批决定

- (1)《贵溪红石金属有限公司年产 5 万0金属硅扩建项目环境影响报告表》 (江苏新清源环保有限公司,2000年 1 月);
- (2)贵溪市生态环境局《关天溪溪红石金属有限公司年产 5 万吨金属硅扩建项目环境影响报告表的私复》(贵环管字[2019]8 号);
- (3)《贵溪红石金属有限公司年产 5 万吨金属硅扩建项目重大变更环境影响报告表》(南省录晟达环保科技有限公司,2020年11月);
- (4) 鹰潭市 溪生态环境局《关于贵溪红石金属有限公司年产 5 万吨金属硅扩建城 重大变更环境影响报告表的批复》(贵环管字[2020]86 号)。

其他相关文件

- (1)国家环境保护总局《排污口规范化整治技术要求(试行)》(环监[1996]470号);
- (2)贵溪红石金属有限公司提供的其它有关技术资料。

和规模证券

验收监测评价标准、标号、级别、限值

根据洪贵环管字[2020]86 号《关于贵溪红石金属有限公司年产 5 万吨金属硅扩建项目重大变更环境影响报告表的批复》,确定本项目验收监测执行标准:项目投入运行后,外排污水 pH、CODcr、BOD5、SS 执行鹰潭(贵溪)铜产业循环经济基地污水处理厂接管标准(其中 NH3-N 执行《污水排入城镇下水道水质标准》表 1 中 B 级标准);生产工序中产生的熔化废气和烘干废气中二氧化硫和氮氧化物执行《大气污染物综合排放标准》(GB16297-1996)表 2 二级标准,颗粒物执行《工业炉窑大气污染物排水准》(GB9078-1996)二级排放标准;厂界噪声执行《工业企业厂界环境噪声排放标准》(GB12348—2008)中 3 类标准;一般固废执行、水般工业废弃物贮存、处置场污染控制标准》(GB18599-2001)及水设单中的相关规定。

表 1-1 污染物排放标准一

	1-1-1-1	/ I	\		(2)		mA 21 5 5
项目	标准	级别	评价标	示准值	水单位为	mg/L (pH	除外))
広ル	鹰潭(贵溪)铜产	产业循环经	рН	CON.	BOD ₅	SS	NH ₃ -N*
废水	济基地污水处理厂	一接管标准	6~9	X 500	300	400	45
	《大气污染物综 合排放标准》	表 2	污染	排气筒高 度(m)	排放浓度 (mg/m³)	1	无组织排 放监控浓 度限值 (mg/m³)
有组	(GB16297-1996	桥他	SO ₂	15	550	2.6	0.4
织废)	× –	302	25	550	15	0.4
气	J.		NOx	15	240	0.77	0.12
	$\wedge_i \wedge$		NOX	25	240	4.4	0.12
	《工业炉 等 入气 污染物排放标准》 (G B	2"	颗粒物	15	200	/	5
	业企业厂界		昼间	司 (dB(A))		夜间(dB	(A))
· 「「「」	境噪声排放标 准》 (GB12348-2008)	3 类	65 55				
	· · · · · · · · · · · · · · · · · · ·		1				

| 一級 | 《一般工业废弃物贮存、处置场污染控制标准》(GB18599-2001)及其修改单 | 固废 |

表二

工程建设内容:

本项目属于扩建性质,位于江西省鹰潭市(贵溪)铜产业循环经济基地(地理坐标:东经 117°12′36.00″,北纬 28°21′2.00″),项目所在地东面为园区道路、江西贵丰铜业有限公司及园区用地;南面为园区道路和园区企业;西面为江西八源节能环保建材有限公司;北面为江西材源沥青工程有限公司和江西中晟金属、限公司,东北面距项目厂界约 140m 为石窝。本项目投资 2000 万元,利用现有部分闲置厂房,建筑面积为 2500 平方米,并在原有项目厂区预留空地上新建一栋建筑面积 2500 平方米成品仓,依托现有办公综合楼、循环水池等设施,购置 4 套中频炉、1 台造粒机、3 台烘干机等设备,实施年产 5 万吨金属设置建项目。

2019年1月,贵溪红石金属有限公司委托江苏新清源环保有限公司编制完成了《贵溪红石金属有限公司年产5万吨金属硅扩建设计环境影响报告表》;并于2019年1月30日取得贵溪市生态环境局《关于高溪红石金属有限公司年产5万吨金属硅扩建项目环境影响报告表的批复》、苏尔管字[2019]8号)。

2020年6月,项目办理验收年产,产产金属硅扩建项目验收工作期间,由于建设单位在实际建设中对照现有环境及其批复等材料时发现存在以下变动: 1、原材料含水率由原环评的20%增加到30~40%之间; 2、烘干机数量由原环评的2台增加到3台; 3、烘干工户中烘干机燃料全部为成型生物质颗粒(管道天然气为备用燃料),成型生物质颗粒用量增加(由原来的600t/a增加至3000t/a),导致污染物排放量增加。因此,建设单位于2020年9月10日委托南昌绿晟达环保科技有限公司工厂项目进行编制重大变更环评,鹰潭市贵溪生态环境局于2020年11月16日《文号"贵环管字[2020]86号对《贵溪红石金属有限公司年产5万吨金属硅扩建项目重大变更环境影响报告表》做出了批复,项目已于2019年4月开始进行建设,于2020年5月建设完成。

本次验收范围主要为贵溪红石金属有限公司年产 5 万吨金属硅扩建项目重大变更和其他相关环保配套设施等;后期所有利用本次验收建筑建设的其它项目,必须另行申报环保手续(不在此次环保验收范围内)。验收内容主要包括核查实际工程建设内容更情况、工程实际环境影响、环境影响报告书及其批复文件所提出的环境保护措施和建议的落实情况、各类环保设施与措施的效果等。

贵溪红石金属有限公司于 2020 年 6 月委托本项目主要由主体工程、辅助工程、公用工程和环保工程组成,主体工程为生产车间;辅助工程主要依托依托现有的办公综合楼、原料仓库和循环水池,新建成品仓库等;公用工程主要由排水管网、供水管网、供电等组成;环保工程由依托现有废水处理设施、新建废气处理设施、噪声控制措施及固废处理设施等组成。项目扩建后新增劳动定员为 18 人。年工作日为 300 天,生产线实行两班制,车间每天工作时间为 8 小时。

项目组成与建设内容见表 2-1

表 2-1 建设项目组成一览表

工程 分类	项目名称	环评工程内容	实际建设内容、	备注
主体工程	生产车间	1F,建筑面积约 2500m²,主要设置了造粒工序、烘干工序等	取消造粒工序,其 工序与 环评 数	依托现有
	办公综合楼	3F,总建筑面积约1350m²	与环评一致	依托现有
	原料仓库	建筑面积约 550m²	评一致	依托现有
辅助 工程	成品仓库	建筑面积约 2500m²	未建成品仓库,产品存放于 车间内	未建
	循环水池	设置 1 个,单个容积约 48m ³ / 党 ×长×深=4m×8m×1.5m × / * * * * * * * * * * * * * * * * * *	与环评一致	依托现有
	供水	由市政供水管网统	与环评一致	依托现有
	供电	由当地供电电网络、供给	与环评一致	依托现有
公用工程	排水	雨水通过地面、排入园区市 政雨水管网; 生活污水依托现有 化粪池水处理后排入园区污水 管网、排入铜产业循环经济基地 污水处理厂处理后达到《城镇污 水处理厂污染物排放标准》 (GB18918-2002)中一级 A 标 准后排入信江(贵溪段)	与环评一致	依托现有
	废工程	化粪池及污水管网等	与环评一致	依托现有
环保	次度气工程		与环评一致,多增加1套水喷淋设施+1根25m排气筒	新建
证程	噪声工程	隔声减振等	与环评一致	新建
ZIA	固废工程	垃圾桶、一般固废暂存处 10m², 位于原料仓西南部)等	与环评一致	新建

项目环保投资一览表见表2-2。

表 2-2 环保投资一览表

序号	项目	环评要求措施	实际建成措施	环评投资额	实际投资额	备注
1	废水	化粪池及污水管网 等	循环水池、依托 厂区化粪池及 污水管网等	0	0	依托
2	废气	1 套集气系统+脉冲 布袋除尘设施+15m 排气筒等	1 套集气系统+ 脉冲布袋除尘 设施+15m 排气 筒; 1 套水喷淋 设施+1 根 25m 排气筒	10	100	
3	固废	固废暂存处、垃圾桶 等	固废暂存处、垃 圾桶等	5	20	新建
4	噪声	减震垫、隔声窗等	减震垫、隔声窗 等	5	20	新建
5	其他	固废暂存处防腐防 渗等	固废暂存处		/	提托
合	计		8	25	140	/

根据现场踏勘,项目周边环境敏感保护及标见下表:

表 2-3 项目环境 感保护目标一览表

环境	环境保护 对象	规模/人	相对人址	相对场界距 离/m	环境保护目标
水环境	信江	大河	NE	140	GB3838-2002《地表水环境 质量标准》中的Ⅲ类水体
	石窝	Y200	NE	1750	
	桃源村	250	Е	950	
	南塘李家	160	ENE	1500	
环境空	老屋為家	200	ENE	1900	《环境空气质量标准》
气	源小学	300	SSW	1130	(GB3095-2012)中二级标准
K	学 畈江家	50	SW	850	
1/3	桥头村	120	W	590	
" N" \"	渔塘村	240	NE	140	
声环境	石窝村	400	NE	140	《声环境质量标准》 (GB3096-2008)2类标准

原辅材料消耗及水平衡:

本项目主要产品见表2-4。

表2-4 项目主要产品一览表

产品名称	产品规格	设计年生产	实际年生产	年生产小时
金属硅锭	主要牌号: 553、441、421、411	5 万吨	5万吨	4800h

表2-5 产品主要成分

项目	Si	Fe	Al	Ca
含量	≥98.7%	0.4~0.5%	0.1~0.5%	0.1~0.3

本项目主要原材料及能源消耗详见表 2-6。

表2-6 原辅材料消耗情况一览表

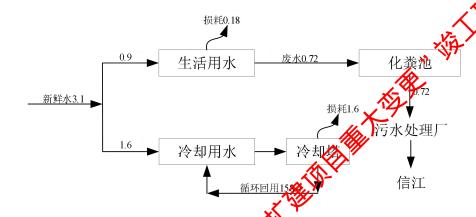
序号	物料名称	形态	环评核算年	实际用量	沙
77, 4	初件石协	沙心	用量(t)	(t)	
					外购人袋袋,包括单晶硅粉和
1	工土业人	固态	7.7万(含水	7.7 万(含水	冷
1	1 硅粉	自心	率 30~40%)	率 30~40%)	3 298.7%,杂质:Fe0.4~0.5%,
					Al0.1~0.5%, Ca0.1~0.3%
2	生物质颗粒	固态	3000 吨	3000	就近外购,袋装
3	天然气*	固态	0	***	由市政供应管道天燃气
4	水	液态	930t	800	园区供水管网提供
5	电	/	1200 万度	980 万度	园区供电网提供

备注: "*"根据建设单位提供资本,项目烘干机燃料以成型生物质颗粒为主,管道天然 气作为备用燃料使用。

硅粉: 金属硅又称结晶在或工业硅,其主要用途是作为非铁基合金的添加剂。 金属硅是由石英和焦发在电热炉内冶炼成的产品,主成分硅元素的含量在 98%左 右,其余杂质为铁、铝、钙等。本项目原料硅粉主要来源于贵溪市及周边县市单 晶硅或者多晶体硅片加工生产企业切割等工序产生的废硅粉。由于硅片加工过程 中需要用类的水,所以原料硅粉含水 30~40%左右。

要设备见表 2-7。

表 2-7 主要设备建设情况一览表


序号	设备名称	型号	单位	环评数量	实际数量
1	造粒机	/	套	1	0
2	铲车	5t	台	1	1
3	中频炉	5t	台	4	4
4	烘干机	/	套	2	3
5	打包机	/	台	2	2
6	模具	/	套	4	4

项目水平衡见表 2-8。

表2-8 项目水平衡表 (m³/d)

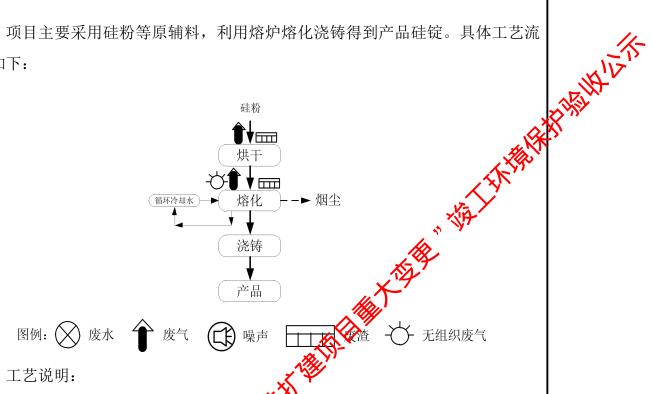
		入方		出方	
项目类型	总用水量	循环用水	新鲜水	损耗	废水排放量
生活污水	0.9	0	0.9	0.18	0.72
冷却用水	1.6	158.4	1.6	1.6	0
合计	3.1	158.4	3.1	1.9	1.2

项目水平衡图:

项目水平衡图 (m³/d) 图 2-1

项目变动情况:

表2-9	饭目] 变动情况	一监事
イスムーフ	ᄴᆫ	1 🗙 🕢 1月 176	₩.4X


	き別	环评批复情况	实际建设情况	变动情况	界定
性	上质	扩建项目	扩建项目	无	无变化
敖	R模	年产5万吨金属硅	年产5万吨金属硅	无	无变化
坦	 点	江西省鹰潭市(贵溪)铜产业 循环经济基地贵溪红石金属 有限公司厂区内	江西省鹰潭市(贵溪)铜产 业循环经济基地贵溪红石金 属有限公司厂区内	无	无变化,
生产	工艺	以硅粉为主要原料, 经硅粉一 造粒一烘干一熔化一浇铸一 产品工序生产金属硅锭	以硅粉为主要原料,经硅粉 一烘干一熔化一浇铸一产品 工序生产金属硅锭	取消造粒工序	下重大 影响
	废水	实施雨污(废)分流,生活污水 进入化粪池预处理后接入市 政污水管网	项目已经实现雨污(废)分 流,生活废水经化粪池处理 后排入园区市政管网	无	无变化
	废气	熔炉废气与烘干废气经管道 引至同一套脉冲袋式除尘器 内处理后通过 15 米高空排放	熔炉废气经脉陈布袋除金器 处理后通过 15m 排為 1# 高空排放 烘干废气经常边引至水喷淋 设施处理片通过 15m 排气	根据实际 建设发生 变化	无变化
环保措施	噪声	选用低噪声的机械设备,并合理布置高噪声设备,对产生噪声的设备采取减震、隔声消声等措施,以减少噪声对周边环境的影响	一個日子 一個 一個 一個 一個 一個 一個 一個 一個 一個 一個	无	无变化
	固	生活垃圾定火分类堆放,交由 园区环卫部门进行清运处理, 建做到日产日清	生活垃圾由当地环卫部门统 一进行卫生填埋处理	无	无变化
-W	体废物	股固废中废包装袋、废炉 渣、废尘渣等分类集中收集入 库定期出售利用	一般固废中废包装袋、熔化 炉和热风炉产生的废渣、脉 冲布袋除尘产生的废尘渣等 分类集中收集入库,定期出 售利用	无	无变化

- (1)本项目在实际生产中取消了"造粒工序"这一工艺流程,改为原料硅粉直接烘干后熔化,硅粉烘干在密闭炉腔内进行,因此仅在进出料时会产生少量粉尘,自然沉降后收集回用于生产,对周边环境影响不大。
- (2) 产品仓库因场地原因取消,现状产品仓库调整至车间内设置,不会造成环境要素变化。

DE

主要工艺流程及产污环节

项目主要采用硅粉等原辅料,利用熔炉熔化浇铸得到产品硅锭。具体工艺流 程如下:

外购硅粉运送至烘干房内,烘干工序交流闭炉腔,进出料粉尘洒水沉降后回 用生产,热风炉燃烧生物质产生的烟气烧烘干房内的烟气管道将热量散发出去, 烘干一段时间去除原料的部分水分,将硅粉粒含水率降低至10~15%;

烘干处理后的硅粉粒装入中频熔化炉,通电利用石墨加热器给炉体加热,加 热至 1700℃左右(中频) 配套有循环冷却水间接夹套冷却控制生产温度)将原料 带入的水分蒸发完全、同时硅粉熔化至液体状物料,然后利用铁模浇铸得到硅锭 产品,检测入

产污水分分析:

* 废气

5项目营运期废气主要熔炉熔化烟气及热风炉烘干废气(由于天然气为备用 燃料,项目实际生产中至本次验收期间未使用过天然气,因此本次验收中热风炉 烘干废气主要以生物质燃烧产生的废气为准。根据现场勘查,天然气燃烧烟气与 生物质燃烧废气都经水喷淋设施处理后经15m排气筒2#高空排放),熔炉废气经管 道引至1套脉冲袋式除尘器内处理后通过15m排气筒1#高空排放。

(2) 废水

本项目废水主要为生活污水和熔炉冷却水,生活污水经化粪池预处理后排至 市政管网;熔炉冷却水循环使用,不外排。

(3) 噪声

	//-							
7	المحالم							
7	本项目产生的	的一般固废主要为生产	产过程产生的废包装袋、废渣等一					
废及生	废及生活垃圾。项目主要污染物种类、来源、排放方式等详见表2-10。							
				X.YI				
			要污染工序一览表	V. J.				
 时段	污染因子			排放				
		表 2-10 主	要污染工序一览表	排放 间断				
时段	污染因子 废水	表 2-10 主 来源 员工生活	要污染工序一览表 污染物种类 pH、COD、BOD5、SS、NH3-N					
时段 营	污染因子	表 2-10 主 来源	要污染工序一览表 污染物种类	间断				
时段 营运	污染因子 废水	表 2-10 主 来源 员工生活	要污染工序一览表 污染物种类 pH、COD、BOD5、SS、NH3-N	间断 有组织、				
时段 营	污染因子 废水 废气	表 2-10 主 来源 员工生活 熔炉废气、烘干废气	要污染工序一览表 污染物种类 pH、COD、BOD5、SS、NH3-N 颗粒物、SO2、NO	间断 有组织、 无组织				

表三

主要污染源、污染物处理和排放

1、废水

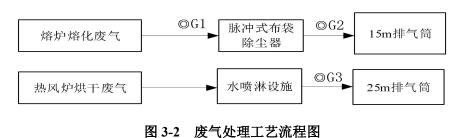
项目营运后废水主要为生活污水和频炉熔化生产过程中冷却水,冷却水循环利用,不外排。废水的主要污染物及治理措施见表 3-1。

表 3-1 废水主要污染物及治理措施

类别	来源	主要污染物	治理措施	排放去向
生活污水	员工生活	PH、COD _{Cr} 、BOD ₅ 、 SS、NH ₃ -N	化粪池	经污水管网排入鹰潭、贵溪) 铜产业循环经济基地污水处 理厂

该项目生活污水依托现有化粪池处理后由市政污水管网进**次**鹰潭(贵溪)铜产业循环经济基地污水处理厂处理。

图 3-1 项目 处理工艺流程图


2、废气

本项目营运期废气主要烙炉熔化烟气及热风炉烘干废气,熔炉废气与烘干废气经管道引至同一套脉冲袭式除尘器内处理后通过15m排气筒高空排放。

项目废气的主要方染物及治理措施情况详见下表 3-2。

表 3-2 废气的主要污染物及治理措施

类别	来源	主要污染物	治理措施	排放去向	
•	熔炉废气	颗粒物、SO2、NOx	集气罩+1 套脉冲布袋除尘	高空排放	
有组织			器+1 根 15m 高排气筒 1#	同工排収	
废仓	 烘干废气	 颗粒物、SO ₂ 、NO _X	1 套水喷淋设施+1 根 25m	高空排放	
2. V.	然 及 【	和 和 A A A A A A A A A A A A A A A A A A	高排气筒 2#	同工개从	
% 无组织	熔炉废气、烘	颗粒物、SO2、NOx	车间通风	无组织排	
废气	干废气	和AMATA AMATA AMAT	十미進八	放	



13

废气处理设施照片:

脉冲式布袋除尘器

排气筒 1#

水喷淋设施

排气筒 2#

3、噪声

本项目营运期噪声来源主要为各种风机、冷却塔等在生产过程中产生的噪声。噪声污染源及治理措施见表 3-3。

表 3-3 噪声污染源及治理措施

类别	来源	主要污染物	治理措施	位置
噪声	却塔、风机	噪声	选用低噪声设备,基础减振、厂房隔声,距离衰减	室外

₩ 固体废物

本项目产生的一般固废主要为员工日产生活垃圾及生产过程产生的废包装袋、熔化炉及热风炉炉渣及布袋收尘等。实际建设中本项目生活垃圾分类收集于垃圾桶后交由环卫部门处置;废包装袋、熔化炉及热风炉炉渣及布袋收尘等一般工业固废收集于固废暂存间后外售综合利用。

验收监测期间调查,项目生活垃圾产生量约为2.7t/a,生活垃圾收集后由环 卫部门统一收集;废包装袋、熔化炉及热风炉炉渣及布袋收尘等一般工业固废产

O BAX

生量为99t/a,暂存于一般固废暂存处后集中外售。

表 3-4 固体废物产排情况一览表

编号	固废名称	环评设计 产量(t/a)	实际产生 量(t/a)	固性类别	处理方式
1	废包装袋	0.5	0.5	一般工业固废	
2	炉渣	45	45	一般工业固废	收集于一般固废间后外售
3	布袋收尘	53.95	54	一般工业固废	收集于一般固废间后外售
4	生活垃圾	4.5	2.7	生活垃圾	统一收集于垃圾桶后交由环卫 部门处置

项目固废处理设施照片如下图:

一般固体废物暂存处

项目主要污染源及治理措施见表 3-5。

表 3-5 项目主要污染源及治理措施

内容 类型	排放源 (編号)	污染物名称	防治措施	实际治理效果
废水	生活力水	pH、COD _{Cr} 、BOD ₅ 、SS、NH ₃ -N	化粪池	满足 GB8978-1996 三级标准后进入污水处理厂进一步处理达标排放排
/K	熔化废气	SO ₂ 、NO _X 、颗粒物	脉冲式布袋除尘 器+15m 排气筒 1#	SO ₂ 、NO _X 满足《大气 污染物综合排放标准》
後气	烘干废气	SO ₂ 、NO _X 、颗粒物	水喷淋设施+25m 排气筒 2#	(GB16297-1996) 二级 标准,颗粒物满足《工 业炉窑大气污染物排放 标准》(GB9078-1996) 二级排放标准
固体	员工办公、 生活	生活垃圾	统一分类收集,交 由环卫部门处理	不会对周边环境产生
废物	一般固废	废包装袋、炉渣、 布袋收尘	收集后外售给相关 单位回收	影响

 噪
 生产过程
 设备噪声
 采用减振、隔声等
 达标排放

5、其他环境保护设施

(1) 卫生防护距离

项目以生产车间边界为起点设置50m卫生防护距离,根据现场勘察,最近敏感点为项目东北方向距厂界约140m的石窝,根据现场调查,本项目卫生防护距离范围内无学校、医院、居民区等环境敏感建筑。

3.2.2 规范化排污口

本项目按照国家环保部要求规范了排污口建设,并设置了各类排污口状识。 具体如下图:

废水排放口

废气排放口

一般固体废物暂存处

噪声源

DAY

表四

建设项目环境影响报告表主要结论及审批部门审批决定:

《年产5万吨金属硅扩建项目重大变更环境影响报告表》主要结论

贵溪红石金属有限公司总投资 2000 万元,在现有厂区内,利用现有闲置厂房及部分预留空地,实施年产 5 万吨金属硅扩建项目,原贵溪市环境保护局以"贵环管字【2019】8 号"文(详见附件 6)对该项目环境影响报告表进行了批复,前该项目基本建成,正在组织安排自主验收当中。对照《建设项目(污染贯重大变动判定原则(试行)》,本项目属于"未新增污染因子但相关污染物产生量增加量大于原环评确定量 10%(含)以上"的情形,属于发生重大变动,应向有审批权的环境保护部门报批项目重大变动环境影响评价文件。

1、环境质量现状

该区域环境空气质量达到《环境空气质量标准》(GB3095-2012)中的二级标准标准要求。区域水体满足《地表水环境质量等准》(GB3838-2002)中III类水质标准以上;区域声环境现状总体水平达到 (GB3096-2008)中3类标准。

2、审批规划相符性分析

本项目位于江西省鹰潭东、贵溪)铜产业循环经济基地,项目用地属于工业 用地,选址处不属于地震,饮用水源保护区、风景名胜区、生态保护区、农田保 护区等区域,防护距离范围内无其他敏感环境保护目标,项目选址合理。项目建 设能推动城镇等的快速发展,符合当地总体规划要求。

3、产业政策分析

及多对,本项目不属于《产业结构调整指导目录(2019年本)》中"鼓励类" 和"淘汰类"项目,属于允许类项目,贵溪市发展和改革委员会对本项目进行了备 案,因此,项目建设符合国家和地方相关产业政策。

4、运营期环境影响

(1) 水环境影响分析

营运期产生的生活污水量为 360t/a, 经过化粪池预处理后进入鹰潭(贵溪)铜产业循环经济基地污水处理厂深度处理达标排放,因此本项目产生的废水不会对周围水环境造成太大影响。

(2) 大气影响分析

变动后污染物排放量增加,废气治理措施等不变,项目熔化烟气与烘干烟气 经过脉冲布袋除尘设施处理后达标排放,只要加强车间管理,保证车间通风排气, 废气对周边环境影响不大。

(3) 声环境影响分析

项目噪声主要来源于造粒机、冷却塔和风机等设备,设备基本安放厂房内,除选用低噪声设备以外,对设备科学合理布局,并经过减振、吸声、隔音处态运营产生的噪声达到标准要求,对周边环境影响不大。

(4) 固体废物影响分析

项目产生的一般固体废物合理分类回收利用,生活垃圾统安全合理处置; 尽量做到日产日清,不对周边环境噪声影响。

(5) 污染物总量控制

5、环境保护要求与建议

- (1)该项目在建设过程中,逐须严格按照国家有关建设项目环保管理规定,执行建设项目须配套建设的产保设施与主体工程同时设计、同时施工、同时投产使用的"三同时"制度
- (2)必须严格落实本环评提出的各项意见,加强"三废"防治工作,强化环境管理,制定各项环保岗位责任制,加强环境保护意识。
- (3) 完成后应及时向当地环保局申请组织验收,同时定期向当地环保部门或者其他相关管理部门申报排污状况,并接受依法监督和管理。
- (4) 做好员工的环保教育宣传工作,定期检查环保设施的运行状况;同时加强生产车间的火灾防治,同时做好企业安全评估工作,按照消防部门的要求配置消防设施。
- (5)实施清洁生产方案,采用对环境友好的无公害原辅料,选用先进的设备,落实节能、节电、节水措施,把污染控制从原先的末端治理向生产的全过程转移和延伸,防患于未然,积极创造条件。

(6)以上评价是根据委托方提供的产品方案、生产工艺和规模做出的,如委托方扩大规模或者改变布局,委托方必须按照环保法律法规要求,重新进行环境影响评价。

综合以上各方面分析评价,贵溪红石金属有限公司年产5万吨金属硅扩建项目重大变更符合国家和地方产业政策要求,总体布局与该区域总体规划相符,投入使用后产生的三废污染物较少。经评价分析,该项目投产后,在采取严格的科学管理和有效的环保治理手段后,污染物能够做到达标排放,能基本维持周边境质量现状,满足该区域环境功能要求。

鉴此,本环评认为,在全面落实本报告提出的各项环保措施、切实做到"三同时"、并在营运期内持之以恒加强管理的基础上,特别做好废气,噪声防治工作,从环保角度来看,本项目在该区域实施是可行的。

《鹰潭市贵溪生态环境局关于贵溪红石金属有限公司 5万吨金属硅扩建项目重大变更环境影响报告表》审批部门审批决定

- 一、项目批复意见及项目基本情况
- (一)项目批复意见。本项目属其他非常属矿物制品制造.。根据《报告表》的结论、本项目建设符合国家和地方产业政策,在全面落实报告表提出的各项环保措施的前提下,切实做到"三同政制度、并在营运期内持之以恒加强管理的基础上,特别做好废气和固废防治工作,切实有效地治理好污染源,防止污染物对周边环境及自身环境造成不良影响。鉴于公示期无单位和个人提出异议,我局原则同意该项目建设。
- (二)项目文 情况。本项目属改扩建(重大变更)项目,位于鹰潭(贵溪)钶产业循环经济 地现有厂区内。地理位置中心坐标为东经 117 12'36",北纬 28 21'2"。项目 在地东面为园区道路和江西贵丰铜业有限公司,南面为园区道路和园区企工 西面为江西八源节能环保建材有限公司,北面为江西材源沥青工程有限公司和江西中晟金属有限公司,占地面积 20000m²,新增建筑面积为 2500m²,建设内容包括建设成品仓库 1 栋及其他附属设施。项目总投资 2000 万元人民币,其中环保投资 25 万元人民币,占项目总投资的 1.25%。现有年产 3 万吨钶阀门、水暖铸件和高精密铜合金生产项目 2012 年获原鹰潭市环 境保护局批文(鹰环函字[【2012】178 号)和重大变更前年产 5 万吨金属硅扩建项目 2019 年获原贵溪市

PAX

环境保护局批文(贵环管字【2019】8号)

重大变更前后主要原辅材料种类不变为硅粉(单晶硅粉、多晶硅粉)、生物质颗粒等,主要变动为硅粉含水率增加和生物质颗粒用量增加。

重大变更后主要设备有:造粒机(1台)、中频炉(4台)、烘干机(共3台,变更后增加1台)等。

重大变更前后工艺流程不变:硅粉→造粒一烘干一熔化一浇铸一产品。 项目重大交更前后规模不变,形成年产5万吨金属硅锭的生产规模。

二、项目建设的污染防治措施及要求

项目在设计、建设过程中必须认真落实《报告表》提出的各项环境措施和要求,严格执行我局提出的有关环境质量和污染物排放标准,并重点做好以下不同阶段的环保工作:

- (一)废水污染防治。按"而污分流、清污分流、废水用"原则合理规划和建设厂区污水收集、循环和排水系统。本项目中频火水产过程中冷却水经过冷却水池及冷却塔冷却后循环利用,不外排;外排废水主要为生活污水,依托原有化粪地预处理达鹰潭(贵溪)铜产业衙环经济系统污水处理厂接管标准后由园区污水管网排入鹰潭(贵溪)铜产业循环经济系地污水处理厂处理。达《城镇污水处理厂污染物排放标准》(CB18918-2002年)一级A标准要求后,最终排入信江(贵溪段)。
- (二)废气污染防治。本项程产生的废气主要为熔化废气和烘干废气。熔化烟尘经集气罩负压收集后,烘干废气一并通过管道引至脉冲布袋除尘设施内处理,废气中颗粒物排放达到《工业炉窑大气污染物排放标准》(GB9078-1996)二级排放标准,二氯化硫和氮氧化物排放达到《大气污染物综合排放标准》(GB1627%1996)表2中二级标准后,通过15m高排气筒1#排放。加强车间无组织废气管理、通过机械排风,完善车间通风换气,确保无组织废气排放达到《工业炉窑大气污染物排放标准》(GB9078-1996)无组织排放最高允许浓度限值烟尘<5mg/m³。

本项目生产车间设置卫生防护距高设为 50m, 在卫生防护距离范围内不得规划建设居民住宅、学校、医院等环境敏感项目。

(三) 固体废物污染防治。固体废物须按"资源化、减量化和无害化"原则 分类处理。扩建项目重大变更后产生的固体废物主要包括废包装袋、烘干机燃烧

NAK

产生的灰渣和布袋除尘装置收集的烟(粉)尘及员工的生活垃圾。废包装袋、烘干机燃烧产生的灰渣和布袋除尘装置收集的烟(粉)尘贮存于一般固废暂存处,定期出售外卖利用,一般固废贮存达到《一般工业废物贮存处置场污染控制标准》(CB18599-2001)及其修改单中的相关规定。生活垃圾收集后均交由环卫部门处置。

(四)环境噪声污染防治。本项目产生的噪声主要来自造粒机、冷却塔和风机等机械设备产生的噪声。通过合理布局,采用先进的生产工艺及先进的低噪光。 备、采用强隔声材料、吸音、消声和减振等处理措施,定期对设备进行检修维护,加强厂区绿化,确保厂界噪声达到《工业企业厂界环境噪声状放标准》 (GB12348-2008)中3类标准。

(五)施工期污染防治。加强施工期问的环境保护管理工作。建筑垃圾必须按照城市市容和环境卫生管理条例的有关规定,对其进行。建处置。要合理安排施工时间和施工机械的使用,禁止夜间(22 时至凌晨下时)和午间(12 时至 14 时)进行噪声产生的建筑施工和室内其他作业,作业区,界噪声必须达到《建筑施工场界环境噪声排放标准》(GB12523-2011)中标准。认真落实扬尘防治措施,减少扬尘对环境的影响。施工泥浆废水和设备丰精冲法皮水经沉淀池沉淀后回用、施工期废水禁止未经任何处理直接外状。

(六)总量控制要求。扩建项目重大变更投产后应满足主要污染物总量控制指标要求: COD 排放总量控制在 0.018t/a, NH₃-N 排放总量控制在 0.002t/a, S0₂排放总量控制在 2.041t/a, NOx 排放总量控制在 3.06t/a 之内。

(七)排污规范化。应按国家有关规定设置规范的污染物排放口,设立标识牌并建档。

一次,不境风险防范措施。本项目生产过程中不涉及危险物质的使用、主要风度的火灾,建设完善的消防报警系统,建立事故防范和处理应对制度。定期开展事故环境风险应急演练、严格落实各项应急管理措施和风险防范措施,强化关键设备的日常检修,严格操作规程,做好运行记录,发现隐患及时处理。

三、项目运行和竣工验收的环保要求

(一)运行管理要求。应按规定设置专门环保管理机构,建立健全环境管理制度,加强污染治理设施运行维护管理和操作人员培训,确保生产期间污染治理设

施稳定运行,严禁擅自闲置、停用污染治理设施。当发生污染推放事故或污染治理设施发生故障时,应停止生产,防止环境污染。

(二)竣工验收要求。项目竣工后,建设单位应当按照国务院生态环境行政主管部门规定的标准和程序,对配套建设的环境保护设施进行验收,编制验收报告并依法向社会公开你公司在环境保护设施验收过程中,应当如实查验、监利、记载建设项目环境保护设施的建设和调试情况,不得弄虚作假。项目经验收合格后方可投入正式运行。

四、其他环保要求

- (一)项目变更要求。《报告表》经批准后,如项目的性质。规模**扩**地点、拟采用的防治污染措施发生重大变动或自批准之日起超过 5 年方**发**工建设,须报我局重新审批。
- (二)违法追究。对已批复的各项环境保护事项必须其执行,如有违反,将依法追究法律责任。
- (三)日常环保监管。铜产业循环经济基地展介环保网格单元监管职能,加强 该项目环境保护日常监督管理工作。环境必察大队加强对项目实施环境保护"三 同时"过程中的环境监察,发现环保险是及时依法处理,防止环境污染。

环评及环评批复"三同时"落实情况

环评及环评批复落实情况见表 4-1。

WHAT IN THE WALL LAND BEING THE WAR TO SEE THE PARTY OF T

表4-1环评及环评批复落实情况一览	表
-------------------	---

과 마니	>二、>h. >m云	ı	业有用 少	分 库盘机棒炉
类别	污染源	环评报告要求	批复要求	实际建设情况
			按"而污分流、清污分流、废水回用"原则合	XXX
			理规划和建设厂区污水收集、循环和排水。	
			系统。本项目中频炉生产过程中冷却水经	y r
			过冷却水池及冷却塔冷却后循环利用分不	项目实际建设中生活污水依托原有化粪池
		生活污水经过化粪池预处理后进入鹰	外排;外排废水主要为生活污水、花托原	预处理后经市政污水管网排入鹰潭(贵溪)
废水	生活污水	潭(贵溪)铜产业循环经济基地污水	有化粪地预处理达鹰潭(贵溪)等产业衙环	铜产业循环经济基地污水处理厂;冷却水
		处理厂深度处理达标排放	经济基地污水处理厂接管校验后由园区污	经过冷却水池及冷却塔冷却后循环利用,
			水管网排入鹰潭(贵溪)(大)业循环经济基	不外排
			地污水处理厂处理、《城镇污水处理厂	
			污染物排放标准 》(18918-2002)中一级A	
			标准要求定义最终排入信江(贵溪段)	
			本项目产生废气主要为熔化废气和烘干	
	熔化废气		废气力的化烟尘经集气罩负压收集后与烘	
			干发 ,并通过管道引至脉冲布袋除尘设	
			流內处理,废气中颗粒物排放达到《工业	 项目实际建设中熔化废气经集气罩负压收
		بکر .	D炉窑大气污染物排放标准》(GB9078-1996)	集后通过管道引至脉冲布袋除尘设施内处
		 项目熔化烟气与烘干烟气经过脉冲布	二级排放标准,二氧化硫和氮氧化物排放	理后经1根15m排气筒1#高空排放;
废气		袋除尘设施处理后达标排放人员	达到《大气污染物综合排放标准》	烘干废气经通过管道引至水喷淋设施处理
		间管理,保证车间通风排气	(GB162797-1996)表2中二级标准后,通过	后经1根25m排气筒2#高空排放
	烘干废气	IN EXP PROPERTY.	15m高排气筒1#排放。加强车间无组织废气	(工艺取消造粒工序, 硅粉经上料机直接
			管理、通过机械排风,完善车间通风换气,	进入热风炉烘干)
			确保无组织废气排放达到《工业炉窑大气	
		K.W.	污染物排放标准》(GB9078-1996)无组织排	
			, , , , , , , , , , , , , , , , , , ,	
ne ±)		放最高允许浓度限值烟尘<5mg/m³。	本见蓝色大家原理见由武大河州仁 艺人型
噪声	设备机械噪声	设备基本安放厂房内,除选用低噪声	通过合理布局,采用先进的生产工艺及先	建设单位在实际建设中对车间进行了合理

□ 设备以外,对设备科学合理布局,并 □ 进的低噪音设备、采用强隔声材料、吸音、 □ 布局,对产	
1	全 噪声的设备采取减震、消声、
	等措施,项目周边加强绿化,
生的噪声达到标准要求 检修维护,加强厂区绿化,确保厂界噪声 人 湯	成少噪声对周边的影响
达到《工业企业厂界环境噪声排放标准》	
(GB12348-2008)中3类标准	
项目产生的一般固体废物合理分类回 固体废物须按"资源化、减量化和无效化"	
一般 一	
烧产生的灰渣和布袋除尘水罩收集的烟。实际建设中	中生活垃圾收集后交由环卫部门
周休 (粉)尘及员工的生活垃圾。爱包装袋、烘干 _{协理。密包}	见装袋、烘干机燃烧产生的灰渣
	上装置收集的烟(粉)尘贮存于一
生活垃圾	暂存处,定期出售外卖利用
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	百行处,足朔山百分头机用
废物。文置场污染控制标准》	
(CB1859×001)及其修改单中的相关规定。	
大 古垃圾收集后均交由环卫部门处置	
验收监测	期间,本项目废水中污染物
废气总量增加至SO ₂ : 2.04t/a、NO ₄	(总量为0.011t/a; 氨氮排放总量
发气总量增加至SO2: 2.04//a、NO3 物总量控制指标要求: COD排放总量控制 为0.0011t/a	,废气中污染物SO ₂ 排放总量为
污染物总量控制 3.06t/a。建设单位通过向当地现象部 门申请确认后能满足污染物的放总控 3.06t/a。建设单位通过向当地现象部 在0.018t/a,NH ₃ -N排放总量控制在0.002t/a, 1.152t/a; N	IOx排放总量为1.968t/a,均满足
制要求。	中总量指标要求: COD控制量
控制在3.06t/a之内	NH ₃ -N控制量0.002t/a; SO ₂ 控制
量2.04	4t/a;NOx控制量3.06t/a。
排污口规范化 应按国家有关规定设置规范的污染物排放 已按国家有	f 关规定设置规范的污染物排放
口,设立标识牌并建档	口、采样口
工生防护距离 本项目生产有间设置卫生防护距高设 本项目生产车间设置卫生防护距高设为 根据现场勘	协察,最近敏感点为项目东北方
为50m,在卫生防护距离范围内不得 50m,在卫生防护距离范围内不得规划建设 向距厂界约	D140m的石窝,根据现场调查,

	规划建设居民住宅、学校、医院等环 境敏感项目	居民住宅、学校、医院等环境敏感项目	本项目卫 外 护距离范围内无学校、医院、 民区等环境敏感建筑
污染物排放总量控制要 求	/	项目主要污染物排放量应满足南昌市环保 局下达的总量控制指标要求	项目实际建设中主要污染物排放量已满足 4. 坏评报告中计算的总量控制指标要求
其他环保要求	/	(一)项目变更环保要求。本批复仅限于 《报告表》确定的建设内容,若项目性质、 规模、地点、生产工艺和环境保护措施等 发生重大变化,必须向我局处请重新办理 环境保护审批手续;自此多之日起超过5年 方动工,环境影响评价之件应报我局重新 审核 (二)日常环况监管。请市环保局高新分 局、市环境紧*支队负责对该项目建设过 程中的日本监督管理工作,监督企业认真 执行之间时"制度	本次验收范围为年产5万吨金属硅扩建项目重大变更项目主体工程、辅助工程等环境竣工验收

表五

验收监测质量保证及质量控制

1、项目监测分析方法与仪器

表 5-1 检测方法及主要仪器设备一览表

监测	监测	八七十分为五十月	方法	仪器名称
类别	项目	分析方法名称及依据	检出限	型号及编号
	pH 值	水质 pH 值的测定玻璃电极法, GB 6920-86	/	pH 计 /PHS-3C/YTO
	氨氮	水质氨氮的测定纳氏试剂分光 光度法,HJ 535-2009	0.025mg/L	可见分光光度计 /SP-W2E/YTGT- YQ-025
废水	五日生化 需氧量	水质五日生化需氧量(BOD ₅)的 测定稀释与接种法, HJ 505-2009	0.5mg	生化培养箱 /SPX-150B-Z/YT GT-YQ-007
	化学需氧 量	水质化学需氧量的测定重铬酸 盐法,HJ 828-2017	mg/L	/
	悬浮物	水质 悬浮物的测定重量法 GB 11901-89	4 mg/L	十万分之一天平 /ESJ30-B5/YTGT- YQ-031
噪声	等效连续 A声级	工业企业厂界环境最声排放标准,GB \$28.48-2008	/	声级计 /AWA6228+/YTG T-YQ-011
	颗粒物	固定污染病并气中颗粒物测定 与气态污染物采样方法,GB/T 16157-1996	20 mg/m ³	
	二氧化硫	定污染源废气中二氧化硫的 测定 定电位电解法 HJ/T 57-2017	3 mg/m ³	智能烟尘采样仪/ 3012H-21/YTGT- YQ-014
废气	人。化物	固定污染源废气中氮氧化物的 测定 定电位电解法 HJ/T 693-2014	3 mg/m ³	· ·
	颗粒物	环境空气 总悬浮颗粒物的测定 重量法,GB/T 15432-1995 及修改 单(生态环境部 2018 第 31 号)	0.001 mg/m ³	十万分之一天平 /ESJ30-B5/YTGT- YQ-031

2、人员能力

人员: 承担监测任务的监测公司通过资质认定,监测人员均持证上岗。

3、设备保障

设备:监测过程中使用的仪器设备符合国家有关标准和技术要求。《中华人民共和国强制检定的工作计量器具明细目录》里的仪器设备,经计量检定合格并

DE!

在有效期内使用,不属于《中华人民共和国强制检定的工作计量器具明细目录》 里的仪器设备,校准合格并在有效期内使用。

4、监测时的工况调查

监测在企业生产设备处于正常运行状态下进行,核查工况,在建设项目竣工环境保护环境现状技术规范要求负荷下监测。

5、采样

采样点位选取考虑到合适性和代表性,采样严格按技术规范要求进行,全室分析过程加测10%的平行双样。噪声采样记录反映监测时的风速,监测的加带风罩,监测前用标准声源对仪器进行校准。校准结果未超过±0.5dk(A),在规范要求范围之内。

6、样品的保存及运输

现场测定的项目,均在现场测定;不能现场测定的加保存剂保存并在保存期内测定;水质监测项目按规范运输。

7、实验室分析

实验室温度为25℃,实验室用水为超水,使用试剂为正规厂家生产,器皿及仪器完成检定、校准。

8、审核制度

采样记录、分析结果、监测方案及报告严格执行审核制度。

9、项目总量控制

根据本项目环评批复可知,本项目投入运营后,主要污染排放应满足以下总量指标要求。OD控制量为0.018t/a; NH₃-N控制量为0.002t/a; SO₂控制量为2.04t/a; X控制量为3.06t/a。

NA PARK

表六

验收监测期间生产工况记录:

力的 75%以上。

本公司于 2020 年 07 月 30 日至 2020 年 7 月 31 日和 2020 年 12 月 1 日至 2020 2 月 2 日对该项目进行了验收监测。在验收监测期间,项目生产工序运行。 且环保设施运转良好。具体生产负荷回主(年12月2日对该项目进行了验收监测。在验收监测期间,项目生产工序运行 常,且环保设施运转良好。具体生产负荷见表 6-1。

表6-1 验收监测期间生产负荷一览表

日期	设计生产量(t/d)	实际生产量(t/d)	生产负荷
2020年7月30日	166	131	78.9%
2020年7月31日	166	129	77.7%
2020年12月1日	166	125	75.3%
2020年12月2日	166	125	75.3%

验收监测内容

1、废水

在项目生活污水排放口设置1个以

表 6-2 水监测内容及频次

监测点位	监测位置	监测目的	V'	监测项目	监测频次	
WW1	生活污水 排放口	考核废外边	рΗ、	SS, BOD ₅ , CODer-	NH ₃ -N	监测2天,每 天4次

2、废气

(1) 有组织

本项目熔水烟尘经一套脉冲式布袋除尘设施内处理后通过15m排气筒1#排 《经一套水喷淋处理设施处理后通过25m排气筒2#排放,监测点位具

表 6-3 有组织棉尘监测因子及频次

监测点位	监测因子	监测频次
排气筒 1#经布袋除尘器处理前◎G1		
排气筒 1#经布袋除尘器处理后总排口◎G2	颗粒物、SO2、NOX	监测2天,每天3次
排气筒 2#经水喷淋除尘设施处理后 G3		

(2) 无组织废气

表 6-4	无组织废	气监测员	容及频次
1X U-4		L IIII. IXII P I	

		- CO : 70 AL 7 (7)	C 4mm (/31 3 11 %)	~>>\\			
监测点位	监测位置	监测目的	J	监测项目	监测频次		
A1	厂界上风向	监测废气背景	景值			1/-	
A2	厂界下风向	考核废气排放达	标情况 500 500 500 500 500 500 500 500 500 50	÷#m co No	监测2天,	117	
A3	厂界下风向	考核废气排放达	运标情况	立物、SO ₂ 、NO _X	每天3次	-19-	
A4	厂界下风向	考核废气排放达	x标情况			村城地上流	
3、厂界噪声监测 验收监测期间,在东、南、西、北厂界外 1m 各布设 1 个监测点,共设 4 监测点位。							
		表 6-5 噒	東声监测频次	**	% ′		
监测点	监测点位	监测目的	监测项目		 频次		
N1	厂界东外1米处			X 24.			
N2	厂界南外1米处	噪声对周围	厂界环境噪声	流測2天,分	·昼间和夜间进		

3、厂界噪声监测

监测点	监测点位	监测目的	监测项目	沙 测频次
N1	厂界东外1米处			~^2\frac{1}{2}'
N2	厂界南外1米处	噪声对周围	│ │ 厂界环境噪声 ╯	海湖2天,分昼间和夜间进
N3	厂界西外1米处	环境的影响		行监测,昼夜各两次
N4	厂界北外1米处			

4、项目监测点位图

本项目废气监测点位见附图3-2;废水规噪声监测点位图见下图6-1。

图 6-1 项目监测点位图

表七

验收监测结果

1、废水监测结果

表 7-1 废水检测结果一览表 单位 mg/L (pH 值: 无量纲)

监测	监测	1次301元6 日		监测	结果		拉佐武英国	标准	达标
点位	日期	监测项目	第一次	第二次	第三次	第四次	均值或范围	限值	评价
		pH 值	6.62	6.37	6.31	6.58	6.31-6.62	6-9	MAR
	7月	化学需氧量	172	178	183	184	179	500×	达标
上江	30 日	五日生化需氧量	75.6	70.6	74.6	72.6	73.3	7300	达标
生活 污水	30 Д	氨氮	0.569	0.606	0.600	0.578	0.569	45	达标
排放		悬浮物	110	136	130	116	1/40	400	达标
		pH 值	6.49	6.33	6.25	6.45	6.49	6-9	达标
WW1	7月	化学需氧量	196	169	186	166	179	500	达标
** ** 1	31 日	五日生化需氧量	70.5	76.5	74.5	72.89/	73.5	300	达标
)1 H	氨氮	0.595	0.569	0.560	65 97	0.595	45	达标
		悬浮物	126	112	144	125	126	400	达标

由表7-1可知,验收监测期间:该项目废水中pH、CODcr、BOD $_5$ 、SS均满足 鹰潭(贵溪)铜产业循环经济基地污水,建厂接管标准(其中NH $_3$ -N满足《污水排入城镇下水道水质标准》表1+23标准)。

2、废气监测结果

(1) 有组织废气

表7-2 熔炉废气监测结果表

		الم	7	1.物		と吮		七 物	标杆
	监测点位		排放	排放	排放	排放	排放	排放	流量
	血坝总型	召期	浓度	速率	浓度	速率	浓度	速率	(m ³ /h)
	T. P.	77	(mg/m^3)	(kg/h)	(mg/m^3)	(kg/h)	(mg/m^3)	(kg/h)	(111 /11)
	1/3	07月	287	/	<3	/	13	/	59793
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1x排气筒	30日	246	/	<3	/	12	/	58593
f	2. 经布袋除	30 🖂	273	/	<3	/	13	/	60447
¥ `	尘处理前	07月 31日	187	/	<3	/	12	/	60865
	G1		139	/	<3	/	13	/	60926
		31□	194	/	<3	/	13	/	61296
	1#排气答	07月 30日	73	1.221	<5	< 0.17	23	0.39	55494
	1#排气筒 经布袋除		65	1.112	<5	< 0.17	23	0.39	55621
	生和表际 尘后总排	30口	78	1.466	<5	< 0.17	21	0.39	56390
	主用芯排 口G2	07月	73	1.270	<5	< 0.17	22	0.39	55217
	HUZ	31日	67	1.079	< 5	< 0.16	23	0.38	53946

湖湖江流

	72	1.178	<5	< 0.16	23	0.37	53528
最大值	78	1.466	<5	< 0.17	23	0.39	/
标准限值	200	/	550	2.6	240	0.77	/
是否达标	达标	/	达标	达标	达标	达标	/

注:熔化炉,过量空气系数 1.7,如实测浓度低于检出限,折算排放浓度按照检出限一半计算,排放速率按照检出限计算。

表7_2	(建)	烘干废气监测结果表
1X / - 4	く突ノ	烘 1 及 1 血侧均不仪

		颗粒	物	二氧化	と 硫	氮氧化	化物	 标杆 ∠
11次河(上)	监测	排放	排放	排放	排放	排放	排放	公公司
监测点位	日期	浓度	速率	浓度	速率	浓度	速率	
		(mg/m^3)	(kg/h)	(mg/m^3)	(kg/h)	(mg/m^3)	(kg/h)	(m ^y h)
	12∃	67	0.165	84	0.20	159	0.39	3297
2#排气筒	12月 01日	69	0.182	86	0.23	142	v 0:38	3491
经水喷淋		72	0.196	89	0.24	151	0.41	3556
设施后排	12∃	55	0.154	86	0.24	1,55	0.43	3422
□ G 3	12月 02日	72	0.198	84	0.23	X147	0.41	3414
	021	59	0.163	80	0.22	135	0.37	3398
最大值	直	72	0.198	89	0.24	159	0.41	/
标准限	值	200	/	550	1)5	240	4.4	/
是否达	标	达标	/	达标/	达标	达标	达标	/

注: 烘干炉(燃料种类: 生物质),排放浓度按整准含氧量9%进行折算。

由表 7-2 可知,验收监测期间,添炉废气中颗粒物、SO₂、NO_x浓度最大值分别 78mg/m³、<5mg/m³、23mg/m³。烘干废气中颗粒物、SO₂、NO_x浓度最大值分别 72mg/m³、89mg/m³、259mg/m³。因此,排气筒 1#和排气筒 2#中 SO₂、NO_x满足《大气污染物涂合排放标准》(GB16297-1996)表 2 中二级标准;颗粒物满足《工业炉客大气污染物排放标准》(GB9078-1996)二级排放标准。

(2) 无组织发气

表7-3 无组织废气监测结果表(单位: mg/m³)

ik will 다 그

		监测因子
血侧口粉	血 <i>侧炒</i> 火(八	颗粒物
	第一次	0.126
07月30日	第二次	0.116
	第三次	0.149
	第一次	0.125
07月31日	第二次	0.154
	第三次	0.115
	第一次	0.246
07月30日	第二次	0.219
	第三次	0.281
07月31日	第一次	0.250
	07月31日	97月30日 第一次 97月31日 第二次 97月31日 第二次 97月30日 第三次 97月30日 第二次 97月次 第三次 97月次 第三次

		第二次	0.229
		第三次	0.259
A3 厂界外下风向		第一次	0.261
	07月30日	第二次	0.235
		第三次	0.236
		第一次	0.281
	07月31日	第二次	0.234
		第三次	0.254
		第一次	0.224
A4 厂界外下风向	07月30日	第二次	0.208
		第三次	0.290
		第一次	0.215
	07月31日	第二次	0,230
		第三次	60 0.298
下风向池	0.298		
The state of the s	5.0		
ì	送标		

气象参数: 07月30日: 风向: 北; 风速 1.3m/s; 气温 36 天气: 晴 07月31日: 风向: 北; 风速 1.4m/s; 气湿 37 C; 天气: 晴

由表 7-3 可知,验收监测期间,本项目聚立物最大值为 0.298mg/m³,满足《工业炉窑大气污染物排放标准》(GB966 1996)无组织排放最高允许浓度限值 5mg/m³。

3、噪声监测结果

表 7-4 水外噪声监测结果一览表(单位: Leq[dB(A)])

$\mathbf{r} = \mathbf{r} + \mathbf{r} = \mathbf{r} + \mathbf{r} = \mathbf{r} + \mathbf{r} = \mathbf{r} + \mathbf{r} = \mathbf{r} = \mathbf{r} + \mathbf{r} = $									
	监测结果								
监测点位	7月:	30日	7月31日						
	天气:晴	风速: 1.3 m/s	天气:晴	风速: 1.4 m/s					
	昼间	夜间	昼间	夜间					
厂界东外1米处 N1	58.1	47.4	54.4	48.4					
厂界南外 米处 N2	58.6	47.3	55.4	47.7					
厂界西外 1 米处 N3	52.1	48.1	52.9	48.2					
证界北外1米处N4	55.6	48.2	54.1	47.8					
标准	65	55	65	55					
是否达标	达标	达标	达标	达标					

从上表 7-4 噪声监测结果可知,验收监测期间,本项目厂界四周噪声排放达到《工业企业厂界环境噪声排放标准》(GB12348—2008)中 3 类标准,满足验收监测执行标准要求。

4、固体废物

项目生活垃圾交环卫部门处理; 废包装袋、炉渣、布袋收尘收集后统一收集后外售。

5、总量控制

根据本项目环评批复可知,本项目投入运营后,主要污染排放应满足以下总量指标要求: COD控制量为0.018t/a; NH₃-N控制量为0.002t/a; SO₂控制量为2.04t/a; NOx控制量为3.06t/a(以生物质为燃料核算)。

表7-5 废水总量核算表

污染物类别	废水年排放	最大排放浓	工作时间	污染物年排	允许挑放量				
77条彻关剂	量(t/a)	度(mg/L)	(d/a)	放量/t	√- (√a)				
CODcr		50	• • •	0.011	0.018				
NH ₃ -N	216	5	300	0.001	0.002				
表7-6 废气总量核算表									
污染物类别	最大排放速率	年运行时间	污染物年排	ή	允许排放量				
	取八冊版述字	+ 4011111	t/a	> "	(t/a)				
SO_2	0.24	300d/a	1.112		2.04				
NOx	0.41	16h/d	.968		3.06				

综上所述,项目建成后废水污染物,总量均能满足环评批复中要求,通过现场核查和实际监测结果,本项目水流气、废水、噪声及固废等污染源采取完善可行的污染防治措施并且可以水排放。因此,本项目基本具备了"三同时"验收条件

NAMES .

表八

验收监测结论:

1、环保设施处理效率监测结果

- (1)本项目按照环评及批复的要求,做到了认真贯彻"三同时"制度,在建设项目中基本落实了各种污染防治措施。
- (2)验收监测期间,运营设备和环保设施运转正常稳定,验收监测结果。 够反映本项目的实际排污状况。

2、污染物排放监测结果

- (1) 废水监测结论:根据监测结果可知,验收监测期间,本项自生活污水排放口中pH值、CODcr、BOD5、SS、均满足鹰潭(贵溪) 都产业循环经济基地污水处理厂接管标准(其中NH3-N满足《污水排入城镇和,道水质标准》表1中B级标准)。
- (2)废气监测结论:根据监测结果可知 收监测期间,本项目有组织废气中颗粒物排放浓度及排放速率均满足 工业炉窑大气污染物排放标准》(GB9078-1996)二级排放标准、SQ NOx满足《大气污染物综合排放标准》(GB16297-1996)表2中二级标准 无组织废气中颗粒物满足《工业炉窑大气污染物排放标准》(GB9078-1996)无组织排放最高允许浓度限值5mg/m³。
- (3)噪声监测结论、根据监测结果可知,验收监测期间,本项目运行期东、西、南、北厂界区、夜噪声均满足《工业企业厂界环境噪声排放标准》(GB12348-2008)类标准。
- - (5) 污染物总量排放情况

验收监测期间,本项目废水中污染物CODcr排放总量为0.011t/a; 氨氮排放总量为0.0011t/a, 废气中污染物SO₂排放总量为1.152t/a; NOx排放总量为1.968t/a, 均满足环评批复中总量指标要求: COD控制量0.018t/a; NH₃-N控制量0.002t/a; SO₂控制量2.04t/a; NOx控制量3.06t/a。因此,本项目基本具备了"三同时"验收条件。

ARX

3、验收结论

综上所述,建设单位较好的落实了环评及环评批复中要求的环境保护相关措 施。营运过程中采取的污染防治措施较为有效,该项目运营期间废水、废气、噪 声、固体废物排放均达到环境保护验收相关要求,因此,本项目基本具备了"三 同时"验收条件。建议该项目通过环境保护验收。

益、经济效益、社会效益的协调发展,建议做好以下工作:

- 项治理措施落实到位,加强环保管理,确保各项污染物稳定达核。放,防止超标 现象发生。
 - (2) 企业应该加强厂区卫生,加强清洁生产的管理

建设项目工程竣工环境保护"三同时"验收登记表

填表单位(盖章) : 贵溪红石金属有限公司 填表人(签字) : 项目经办人(签字) :

	**** 1 1	_ \/				SERVICE OF THE SERVIC							
	项目名称	年产5万吨金属硅扩建项目重大变更					项目代码	2	2018-360681-32-03-030164 注读地点 精深加工区东西向主干道以北、 <u>:</u>				
	行业类别 (分类管理名录)	十九 非金属矿物制品业				建设性质 □技术改造			改造				
	设计生产能力	5 万吨/年					实际生产能		5万吨/宪	环评单位 南昌		i昌绿晟达环保科技有限公司	
建	环评文件审批机关	鹰潭市贵溪生态环境局					审批文号		贵环管字[2030]86号	环评文件类型		环境影响报告	表
设	开工日期	2019年4月					竣工日期		20年5月	排污许可证申领时间		/	
项	环保设施设计单位	黄石市海蓝环保工程有限公司					环保设施施	江单位 黄花	石成与传环保工程有限公司 本工程排污许可证编号		/		
目	验收单位			鹰潭贯通环保有阿	 艮公司		环保设施监	河单位	鹰潭贯通环保有限公司	验收监测时工	况	75%以上	
	投资总概算 (万元)		2000					.概算(方式)	% .		6)	1.25	
	实际总投资 (万元)			2000			实际环保护	资 (五元)	140	所占比例(%)		7	
	废水治理 (万元)	0	废气治理(万元)	100	噪声治理(フ	万元) 20 固体		逕 (万元)	20	绿化及生态 (万元)		/ 其它(万元) /	
	新增废水处理设施能力						新增废气	·理设施能力		年平均工作时		3900h	
		贵溪红石金属有限公司 运营单位社会		运营单位社会统一	信用状码 (或组织机构代码)		9136068159885101X4	验收时间		2020年7月至11月			
	污染物	原有排放 量 (1)	本期工程实际 排放浓度 (2)	本期工程允许 排放浓度 (3)	本期工程产 生量 (4)	本期工程自身	期工程实际非放量(6)	本期工程核 定排放总量 (7)	本期工程"以新带老"削 减量 (8)	全厂实际排 放总量 (9)	全厂核定排放 总量 (10)	区域平衡替代 削减量 (11)	排放增 减量 (12)
污染	废水					100	216	()					(12)
物排	化学需氧量		179	500		3	0.011	0.018					
放达标与	氨氮		0.595	25		۲۰۷.	0.0011	0.002					
总量	石油类												
控制	度气 二氧化硫		89	550	W.		1.152	2.04					
(I	烟尘		78	200	17		1.132	2.04					
业建设 日详 填)	工业粉尘			1	-		1.968	3.06					
	氮氧化物		159	2A(2)									
	工业固体废物												
	与项目有关 SS			K. W.									
	的其他特征 <u>总磷</u> 污染物		\	7									

注: 1、排放增减量: (+) 表示增加, (-) 表示减少。2、(12)=(6)-(8)-(11), (9) = (4)-(5)-(8)- (11) + (1) 。3、计量单位: 废水排放量——万吨/年; 废气排放量— 万标立方米/年; 工业固体废物排放量——万吨/年; 水污染物排放浓度——毫克/升